A Python/C library for bound-constrained global optimization with continuous GRASP

نویسندگان

  • Ricardo Martins
  • Mauricio G. C. Resende
  • Panos M. Pardalos
  • Michael J. Hirsch
چکیده

This paper describes libcgrpp, a GNU-style dynamic shared Python/C library of the continuous greedy randomized adaptive search procedure (C-GRASP) for bound constrained global optimization. C-GRASP is an extension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief introduction to C-GRASP, we show how to download, install, configure, and use the library through an illustrative example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Python/C++ library for bound-constrained global optimization using a biased random-key genetic algorithm

This paper describes libbrkga, a GNU-style dynamic shared Python/C++ library of the biased random-key genetic algorithm (BRKGA) for bound constrained global optimization. BRKGA (Gonçalves and Resende, 2011) is a general search metaheuristic for finding optimal or near-optimal solutions to hard optimization problems. It is derived from the random-key genetic algorithm of Bean (1994), differing i...

متن کامل

Continuous GRASP with a local active-set method for bound-constrained global optimization

Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic – based on the CGRASP and GENCAN methods – for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN on a set of bench...

متن کامل

The GLOBAL optimization method revisited

The multistart clustering global optimization method called GLOBAL has been introduced in the 1980s for bound constrained global optimization problems with black-box type objective function. Since then the technological environment has been changed much. The present paper describes shortly the revisions and updates made on the involved algorithms to utilize the novel technologies, and to improv...

متن کامل

Global optimization by continuous grasp

We introduce a novel global optimizationmethod calledContinuous GRASP (C-GRASP) which extends Feo and Resende’s greedy randomized adaptive search procedure (GRASP) from the domain of discrete optimization to that of continuous global optimization. This stochastic local search method is simple to implement, is widely applicable, and does not make use of derivative information, thus making it a w...

متن کامل

Speeding up continuous GRASP

Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2006). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013